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Abstract—This paper introduces a distributed multi-robot
exploration system that combines bio-inspired flocking dynamics
with machine learning-powered connectivity prediction to enable
efficient unknown environment mapping while maintaining ro-
bust communication networks. Designed for emergency response
scenarios where operational timelines and network reliability are
critical, the approach enriches a previous work to implement a
role-adaptive framework in which robots dynamically alternate
between exploration-focused and connectivity reinforcement be-
haviors based on real-time signal strength assessments. Explorers
employ frontier detection to explore the unknown areas enhanced
with RSSI-aware frontier choosing mechanism, while supporters
autonomously position themselves using Flocking inspired be-
havior, forming communication relays. A comparative evaluation
of machine learning models trained on FIT-IoT-Lab-collected
signal propagation data enables the system to predict RSSI
values in different environments. The system’s innovation lies
in its integration of flocking-based swarm coordination with
data-driven connectivity prediction, addressing the challenge of
maintaining network stability while exploring unknown areas
efficiently. In addition, the system is designed to operate within
the strict computational constraints typical of embedded robotic
platforms, leveraging lightweight machine learning models that
enable real-time connectivity predictions.

Index Terms—swarm robotics, distributed exploration, flocking
algorithms, machine learning, RSSI prediction, fit-iot-lab

I. INTRODUCTION

Modern disaster response operations require robotic systems
that can rapidly map structurally compromised environments
while maintaining continuous communication. This dual man-
date exposes significant limitations in conventional swarm
architectures. Frontier-based exploration excels at minimizing
redundant coverage; however, centralized variants [1] are vul-
nerable to single-point failures, and decentralized implemen-
tations [2] can devolve into uncoordinated movements under
signal attenuation. In contrast, pure flocking approaches [3]
maintain swarm cohesion but tend to prioritize collective mo-
tion over targeted exploration, leaving critical areas unmapped.

To overcome these challenges, we propose a hybrid ap-
proach that integrates frontier-based exploration with bio-
inspired flocking dynamics, enhanced by a machine learn-
ing—driven connectivity prediction module. In our system,
robots dynamically switch between explorer and supporter
roles to balance rapid area coverage with robust commu-
nication. Explorer robots employ established frontier-based

Nathalie Mitton
Inria, France
nathalie.mitton @inria.fr

methods [4], [5] to systematically map new territories, while
supporter robots leverage bio-inspired positioning strategies
[6] to form adaptive relay chains that maintain network
connectivity. This dynamic role assignment optimizes both
exploration efficiency and network stability, demonstrating the
benefits of adaptive strategies in complex systems.

By distributing decision-making among individual robots
and incorporating real-time connectivity assessments through
machine learning, our approach mitigates the risks associ-
ated with single-point failures and uncoordinated behaviors
observed in purely centralized or decentralized schemes. This
seamless integration ensures continuous connectivity through-
out the exploration process, enhancing operational efficiency
in dynamically changing environments typical of disaster
response scenarios.

More specifically, the specific contributions of this paper
are twofold:

1) We propose a refined frontier selection process that
uses an RSSI prediction model that evaluates candi-
date exploration targets based on predicted connectivity
metrics, with the goal of maintaining the quality of the
connection while efficiently exploring unknown areas.

2) We build upon DRBECM’s [7] role-switching mech-
anism by incorporating an RSSI-based evaluation to
more effectively preserve communication in practical
environments.

The remainder of this paper is organized as follows: Section
IT reviews the literature on multi-robot exploration, machine
learning for connectivity prediction and the existing role
switching approaches, Section III introduces the system model
and background, Section IV presents the proposed method,
which implementation and experimental setup is presented in
Section V. Section VI discusses the results and VII concludes
and outlines directions for future research.

II. RELATED WORKS

Maintaining robust communication while efficiently explor-
ing unknown environments is a longstanding challenge in
multi-robot systems. In what follows, we review the key con-
tributions that have shaped research in distributed exploration,
bio—inspired coordination, and connectivity prediction.



A. Multi—Robot exploration and frontier—based mapping

Frontier—based exploration was first introduced by Ya-
mauchi [8], providing a simple yet effective method to guide
robots toward the boundary between known and unknown
areas. Building on this idea, Burgard et al. [9] developed
coordinated multi—robot exploration strategies that allocate
different frontiers to individual robots in order to minimize
overlap and maximize coverage. The probabilistic framework
detailed in Fox et al. [10] has become a cornerstone for
integrating mapping and localization (SLAM) in uncertain
environments. More recent surveys such as Quattrini Li [11]
emphasize that distributed approaches have matured to address
dynamic and large-scale settings, thus laying the foundation
for our distributed system.

Our system builds on the seminal frontier—based exploration
methods introduced by Yamauchi, Burgard et al., and Fox et
al. We adopt these well-established exploration principles as
a foundational baseline. In contrast to conventional frontier
assignment approaches, we integrate bio—inspired flocking
dynamics to drive decentralized coordination. This integration
allows robots to assign exploration frontiers locally and adap-
tively, thereby reducing exploration overlap and enhancing
coverage efficiency in unknown environments.

B. Machine learning for connectivity prediction

Ensuring continuous communication in distributed multi
robot networks is critical, especially in emergency response
scenarios. Traditional approaches rely on conservative heuris-
tics. However, recent work has used data—driven methods
for more accurate connectivity prediction. For example, the
Latif and Parasuraman’s CQLite framework [12] employs dis-
tributed Q learning based on coverage to reduce communica-
tion overhead during exploration. Complementary distributed
approaches, such as DORA [13] and the recent work on
autonomous swarm formation for dynamic network bridging
by Galliera et al. [14], further illustrate how integrating
connectivity prediction into the control loop can significantly
enhance network robustness.

Inspired by recent advances in data—driven methods, such
as those exemplified by the CQLite framework, our work
leverages machine learning—powered connectivity prediction
to inform robot motion planning. Rather than relying solely
on conservative strategies based on heuristics, we embed
an ML model that evaluates network quality in real time.
This proactive approach helps adjust trajectories based on the
anticipated quality of the link, thereby enhancing the overall
resilience of the system.

Building on this seamless integration of exploration and
connectivity, our framework further addresses dynamic oper-
ational demands in challenging scenarios.

C. Role-Adaptive frameworks for emergency response

In high-stakes applications like disaster response, main-
taining network connectivity is as critical as covering un-
explored territory. Role—adaptive frameworks enable robots
to dynamically shift their behavior from pure exploration to

acting as communication relays. Arslan et al. [15] introduced
a hierarchical clustering method that supports dynamic role
allocation, ensuring that certain robots reinforce connectivity
while others extend the map. In parallel, Queralta et al. [16]
provide strategies for collaborative multi-robot search and res-
cue that emphasize adaptive role distribution. More recently,
Kashyap et al. [17] have highlighted the importance of such
role—adaptivity in urban search and rescue, reinforcing the
need to balance exploration with robust network maintenance.

Although earlier role-adaptive frameworks, as proposed
by Arslan, Queralta, and Kashyap, typically allocate static
roles or rely on hierarchical clustering, our approach takes
a more fluid stance. By combining bio—inspired flocking
dynamics with our ML-based connectivity prediction, the
system inherently balances exploration with communication
maintenance without enforcing rigid role assignments.
This dynamic self-organizing mechanism allows robots
to seamlessly shift between exploration and acting as
communication relays, offering a flexible solution in rapidly
evolving and mission—critical environments.

In summary, while prior work has individually addressed
frontier-based exploration, bio—inspired coordination, and con-
nectivity maintenance, our approach uniquely integrates these
elements by embedding a machine learning—driven connec-
tivity prediction module into a dynamic role—adaptive frame-
work. This integration not only leverages the strengths of
decentralized decision—making and robust swarm coordination
but also provides a proactive mechanism to maintain network
connectivity during rapid exploration. Such a comprehensive
integration distinguishes our work from existing methods and
lays the groundwork for the subsequent system model and
proposed approach.

III. SYSTEM MODEL AND BACKGROUND
A. System model

We consider a distributed multi-robot system operating in
an unknown, grid-based environment. Each robot is equipped
with limited onboard sensing, processing, and communica-
tion capabilities. The environment is discretized into a 2
dimensional grid, where each cell represents a spatial unit
that can be explored. Robots maintain a local map, which is
incrementally updated as they sense their surroundings, and
share information with nearby agents via short-range wireless
communication.

The communication network is modeled using a Relative
Neighborhood Graph (RNG), where a link between two robots
exists only if no other robot is closer to both. This mechanism
ensures that redundant or weak links are minimized, thereby
enhancing the reliability of multi-hop communication. Each
robot’s ability to communicate is quantified by the Received
Signal Strength Indicator (RSSI), which is predicted based on
the relative X and Y coordinates from the predicting robot.

Robots are assumed to be homogeneous in terms of mobility
and sensor capabilities, but they dynamically assume different



roles (explorer or supporter) based on local connectivity as-
sessments. This role—adaptive behavior is critical for balancing
rapid exploration with the need to sustain a connected network.
The following subsection reviews the baseline DRBECM
framework and details the modifications introduced in this
work.

B. DBRECM

In the original DRBECM framework, robots autonomously
explore unknown environments while preserving robust com-
munication with a fixed base station. The algorithm dynam-
ically assigns roles(explorer or supporter) based on local
connectivity conditions and exploration needs. Robots employ
a Relative Neighborhood Graph for efficient neighbor selec-
tion, use frontier-based exploration to identify the boundaries
between known and unknown regions, and implement collision
avoidance and stagnation detection mechanisms to ensure safe
and continuous navigation. Each robot incrementally updates
its local map and shares information with nearby agents,
thereby maintaining a coherent, multi-hop communication
network throughout the exploration process.

This work presents a variation and updated version of
DRBECM with two principal modifications. First, to enhance
connectivity maintenance, each robot now incorporates a RSSI
prediction mechanism using a pre-trained machine learning
model. In addition to the original geometric criteria, an ex-
plorer robot evaluates the predicted RSSI with respect to its
nearest supporter or the base station. Should the predicted
RSSI fall below a predefined threshold, the robot transitions
to a supporter role to reinforce network connectivity.

Second, the frontier selection process has been refined with
a post-processing step. After identifying frontier cells from
the boundaries of the locally sensed map, each candidate is
evaluated for its connectivity potential by predicting its RSSI
relative to the robot’s current position and the positions of
connected supporters or the base. The frontier with the best
predicted RSSI is then selected as the target, ensuring that the
area to discover is within a safe connectivity range. In cases
where no frontier satisfies the connectivity criteria, a fallback
mechanism allows the robot to continue its exploration while
still maintaining a minimal communication link.

The original DRBECM framework provides a decentralized
method for multi—robot exploration by dynamically assigning
roles based solely on geometric criteria. In our enhanced
version, DBRECM-ML, the incorporation of machine learn-
ing—driven RSSI prediction and an improved frontier selection
process allows for more informed and adaptive role switching,
ensuring that communication reliability is maintained even in
challenging signal environments.

IV. PROPOSED APPROACH

We propose an enhanced multi-robot exploration frame-
work, termed DBRECM-ML, which extends the original DR-
BECM method by incorporating a machine learning—driven
connectivity prediction module and refining the frontier selec-
tion process. Our approach retains the decentralized decision-

making and flock-inspired connectivity maintenance of DR-
BECM, while leveraging real-time RSSI measurements to
guide both dynamic role assignment and exploration target
selection.

A. Dynamic Role Assignment

In our approach, each explorer robot continuously collects
RSSI measurements from candidate communication links.
During the role-update phase, an explorer evaluates the mea-
sured RSSI between its current position and that of its closest
supporter (or the base). If the predicted RSSI falls below a
designated threshold, the robot transitions to a supporter role to
mitigate the risk of communication loss in areas with adverse
signal propagation conditions.

Equation (1) formalizes the update rule for the role p; (t+1)
of robot ¢ based on its current state, the set of neighboring
explorers F;(t), and local connectivity conditions. In the first
case, if robot i is an explorer (p;(t) = explorer) and its
set of neighboring explorers is non-empty, it switches to the
supporter role if, for every robot r; in its set of neighboring
supporters S;(t) (augmented with the base B), the measured
RSSI is less than or equal to a threshold Tone. In the second
case, if robot 4 is a supporter (p;(t) = supporter) and satisfies,
being connected to the base (directly or via other supporters),
having an empty set of neighboring explorers, and having
exactly one supporter in its vicinity that is closer to the base, it
transitions back to the explorer role when the RSSI is greater
than or equal to a threshold T,x. Otherwise, the robot retains
its current role.

if p;(t) = explorer, E;(t) # 0,

Vr; € Si(t)U B

such that RSSI;;(t) < Tyong,

if p;(t) = supporter, Cn(i) = True,
Ei(t) =0,15:(t)] = 1, Vrj € Li(t),
Cn(j) = True, I, € L;(t)

with py(t) = supporter,

dip(t) < d;p(t)

and RSSI;; () > Tyeak,

otherwise.

supporter,

explorer,

pi(t+1) =

pi(t)a
(1)

Where:

e pi(t): The role of robot i at time ¢, where p;(t) €
{explorer, supporter}.

e E;(t): The set of neighboring robots of 7 that are currently
assigned the explorer role.

e S;(t): The set of neighboring robots of i that are currently
assigned the supporter role.

e B: The base station, which serves as a fixed communi-
cation anchor.

o RSSI;;(t): The measured received signal strength indica-
tor between robot ¢ and robot j at time {.



e Tiwong and Tyeq: The RSSI thresholds used in the role
switching mechanism.

e Cn(i): A binary indicator denoting whether robot i is
connected to the base (either directly or via other sup-
porters).

o L;(t): The set of all neighboring robots of i as defined
by the connectivity graph.

e d;p(t): The Euclidean distance from robot 7 to the base
station at time ¢.

B. Frontier Selection

Once the local map is updated, frontier cells(the boundaries
between explored and unexplored regions) are identified. The
frontier selection process then evaluates each candidate based
on its connectivity potential. In particular, Equation (2) defines
the set of safe frontiers Fyp(t) at time ¢. A frontier cell f is
considered safe if the predicted RSSI between f and at least
one supporter robot in S;(t) is at least Tiss;. Then, the frontier
with the maximum predicted RSSI among all the predictions
is is chosen as the next frontier to be explored. This criterion
ensures that even under the worst-case connectivity condition,
the communication link from the frontier to a supporter meets
the minimum quality required for reliable operation.

Fsafe(t) = {f € Fl(t)

RSSI;: (1) > Thg 5. (2
rjrg;)gt) fj()_ rss} 2)

Where:

e F;(t): The set of frontier cells in the local map of
robot 7, representing the boundaries between explored and
unexplored regions.

o RSSI;;(t): The predicted RSSI value between a frontier
cell f and supporter robot r; at time ¢.

o Tissi: The minimum acceptable predicted RSSI threshold
required for a frontier cell to be considered safe.

V. IMPLEMENTATION AND EXPERIMENTAL SETUP

A. Data collection using the Fit loT-Lab

This work leverages the large-scale IoT-LAB testbed [18],
where we conducted experiments on 126 M3 nodes. These
M3 nodes are equipped with a 32-bit ARM Cortex-M3
(STM32F103REY) microcontroller operating at up to 72 MHz,
featuring 64 KB of RAM and 256 KB of ROM. The ra-
dio interface is an AT86RF231 chip that supports 2.4 GHz
IEEE 802.15.4 communication at a maximum bandwidth of
256 kbit/s.

In our data collection scenario, we designated one node
as the broadcaster (emitter) and the remaining 125 nodes
as listeners. The broadcaster periodically sent messages at a
given transmission power (0dBm), while the listeners recorded
the Received Signal Strength Indicator (RSSI) along with
additional metadata such as channel and message ID.

Each line contains a timestamp, node identifier, message ID,
channel number, and the measured RSSI in dBm.

B. Data preprocessing

After extracting the relevant fields from the raw logs, we
performed several preprocessing steps:

e Cleaning and Parsing: Lines without valid reception
information or incomplete metadata were discarded. For
each valid entry, the RSSI value was converted from a
string (e.g., “-60dBm”) into a numerical format (e.g.,
—60).

e Outlier Removal: We employed an Interquartile Range
(IQR) filter [19] to remove extreme RSSI readings that
could adversely affect model training. Concretely, we
computed the first quartile Q; (the 25" percentile) and
the third quartile Q3 (the 75" percentile) of the RSSI
distribution, then defined IQR = @3 — (1. Any data
point whose RSSI value fell outside the interval [Ql —
1.5 x IQR, Q3+ 1.5 x IQR] was deemed an outlier and
excluded. This step removes sporadic signal fluctuations
(e.g., due to hardware anomalies or environmental inter-
ference) and helps ensure that the resulting dataset better
represents typical signal propagation patterns for robust
model training.

o Coordinate Normalization: The raw (z,y) coordinates
for each node (provided by FIT IoT-LAB’s internal
localization or by known node placements) were shifted
and scaled relative to the broadcaster reference point to
ensure consistency. This step helps the regression model
learn distance-based RSSI patterns more effectively.

Following these steps, we split the refined dataset into

training and test subsets, ensuring that the test data was
withheld from any training process to provide an unbiased
evaluation.

C. Model training and hyper-parameter tuning

We evaluated multiple regression algorithms (e.g., Deci-
sion Tree, Random Forest, Gradient Boosting, LightGBM,
CatBoost, XGBoost, Support Vector Regressor (SVR), and
K-Nearest Neighbors Regressor) to predict the RSSI based
on the distance between transmitter and receiver nodes. Each
model was tuned via a grid search with cross-validation (3-
fold), optimizing hyperparameters to minimize the Root Mean
Square Error (RMSE). We also tracked Mean Absolute Error
(MAE) and R? for a comprehensive view of model perfor-
mance. Inference time and memory usage were measured with
Python’s t ime and tracemalloc libraries, respectively, to
ensure the selected model could run efficiently on resource-
constrained robotic platforms. The weights of the final chosen
model were frozen and saved using pickle library for
integration into our multi-robot exploration framework.

D. Simulation environment and evaluation

The final system is implemented in Python on a 120 x 120
grid-based environment. Robots operate with predefined mo-
tion and communication parameters. The DRBECM algorithm,
augmented with machine learning predictions, governs how
robots explore new areas while preserving network connectiv-
ity. Each simulation run records metrics such as:



o Exploration Time: The number of steps required to cover
a target percentage of the map.

e Coverage: The fraction of cells discovered in the envi-
ronment.

e Redundant Exploration: The count of cells explored more
than once.

o Distance Traveled: The cumulative distance traveled by
all robots.

The results are aggregated over multiple runs with varying
numbers of robots, enabling a robust evaluation of the trade-off
between exploration efficiency and communication reliability.

V1. RESULTS AND DISCUSSION
A. Machine learning model evaluation

1) Evaluation metrics for connectivity prediction model:
To rigorously assess the performance of the connectivity
prediction model, we employ several standard regression
metrics along with some resource utilization metrics. These
metrics evaluate both the accuracy of the RSSI predictions
and the suitability of the model for real-time deployment
on resource—constrained platforms. In our experiments, good
model performance is characterized by low RMSE and MAE
values (close to zero), an R? score near 1, as well as minimal
inference time and memory usage. The metrics are defined as
follows:

o Root Mean Square Error (RMSE): Defined as

3)

where g; is the predicted RSSI, y; is the actual RSSI, and
n is the number of samples. A low RMSE indicates that
the average error is small, which is desirable.

e Mean Absolute Error (MAE): Given by

N
MAE =~ ; 19 = wil, (4)
MAE provides the average absolute difference between
the predicted and actual RSSI values. Values close to zero
indicate high prediction accuracy.
o Coefficient of Determination (R? Score): This metric
is calculated as

i (i — )
doie (yi — ?)2 ’

where 7 is the mean of the actual RSSI values. An R?
score close to 1 signifies that the model explains most of
the variability in the data.

o Inference Time (s): This is the average time required by
the model to generate a RSSI predictions. Low inference
time (on the order of milliseconds or lower) is critical for
supporting real-time decision—making in dynamic robotic
environments.

o Memory Usage (bytes): This metric quantifies the mem-
ory footprint of the deployed model. Lower memory

R2=1- (5)

usage is advantageous, especially when the model is to
be run on embedded systems or platforms with limited
computational resources.

2) Results of connectivity prediction model evaluation:
Table I summarizes the performance of various regression
models employed for RSSI prediction. The evaluation metrics
include RMSE (Eq. (3)), MAE (Eq. (4)), R2 score (Eq. (9)),
inference time, and memory usage. All experiments were
conducted on a 64-bit operating system with a 12th Gen Intel®
Core™ i5-12500H CPU (2.50 GHz) and 32 GB of RAM.

Accuracy: Among the evaluated models, tree—based meth-
ods (i.e., Decision Tree, Extra Trees, Gradient Boosting, Light-
GBM, CatBoost, Random Forest, and XGBoost) yield RMSE
values around 1.1948 and MAE values close to 0.55, with
R? scores approximately 0.9664. For example, the Decision
Tree model achieves an RMSE of 1.194825, which represents
a reduction of approximately 76.1% compared to AdaBoost
(RMSE = 5.013599) and nearly 79.8% compared to Linear
Regression (RMSE = 5.922185). In contrast, models such as
AdaBoost, Elastic Net, Linear Regression, and Support Vector
Regression exhibit significantly higher error values (with RM-
SEs ranging from 5.013599 to 5.922185 and R? scores below
0.41), indicating inferior performance in capturing the RSSI
variability.

Inference Time: Inference time is a critical factor for
real-time applications. Notably, the Decision Tree model
demonstrates an inference time of 0.0025 s, which is approx-
imately 99% lower than that of the Random Forest model
(0.2513s). Similarly, LightGBM and XGBoost offer com-
petitive inference times (0.005s and ~0.008 s, respectively),
making them suitable for real-time deployment.

Memory Usage: Memory footprint is equally important
for resource—constrained platforms. XGBoost requires only
16,548 bytes of memory, which is about 42.6% lower than
that of Random Forest (28,806 bytes). The Decision Tree
model also shows favorable memory usage (24,953 bytes),
and most high—accuracy models fall within a similar range
(approximately 24,900 to 29,000 bytes), except for K-Nearest
Neighbors which uses 29,979 bytes.

Summary: Overall, tree-based models such as Decision
Tree and XGBoost deliver an excellent balance between pre-
diction accuracy and computational efficiency. With RMSE
and MAE values around 1.19 and 0.55, respectively, and R?
scores exceeding 0.966, these models are able to capture the
underlying RSSI dynamics effectively. Moreover, the Decision
Tree model offers exceptionally low inference time (0.0025 s)
and modest memory usage, while XGBoost provides the
lowest memory footprint (16,548 bytes). These performance
characteristics render them particularly well suited for integra-
tion into our distributed multi—robot exploration framework.

B. Simulations settings for models comparison

We performed a series of simulations to evaluate the perfor-
mance of our proposed method compared to DRBECM and
other multi-robot exploration algorithms. Table I summarizes



TABLE I
MODEL PERFORMANCE COMPARISON

Model RMSE MAE R2 Score | Inference Time (s) | Memory Usage (bytes)
AdaBoost 5.013599 | 4.249386 | 0.407860 0.004002 25566
CatBoost 1.194825 | 0.549787 | 0.966369 0.007545 26706
Decision Tree 1.194825 | 0.549787 | 0.966369 0.002500 24953
Elastic Net 5.922161 | 4.839469 | 0.173799 0.001003 25063
Extra Trees 1.194825 | 0.549787 | 0.966369 0.062986 28694
Gradient Boosting 1.194830 | 0.549920 | 0.966369 0.112972 25863
K-Nearest Neighbors 1.262389 | 0.561584 | 0.962459 0.013499 29979
LightGBM 1.194848 | 0.550685 | 0.966368 0.005000 25016
Linear Regression 5.922185 | 4.839405 | 0.173792 0.002001 24894
Random Forest 1.194740 | 0.549707 | 0.966374 0.251301 28806
Support Vector Regression | 5.105113 | 3.741817 | 0.386046 1.938107 25022
XGBoost 1.194824 | 0.550040 | 0.966370 0.007999 16548

the key simulation parameters. In our experiments, all simu-
lations were conducted on a 120 x 120 grid map, with each
robot possessing a sensing range of 4 units. The number of
robots varied from 11 to 15, and each configuration was run
30 times. A maximum of 3000 simulation steps was allowed
per run, after which the simulation was terminated if the target
coverage was not achieved. In addition, we inspire from [20]
the RSSI thresholds, for good and bad connectivity, for role
switching were set as follows: Tiyong Was set to -65 dBm,
while the Tyeax Was set to -75 dBm.

TABLE II

SIMULATION PARAMETERS
Parameter Value
Grid Size 120 x 120
Sensing Range 4 units
Number of Robots 11-15
Maximum Simulation Steps 3000
Tstrong -65 dBm
Tweak -75 dBm
Number of Runs per Configuration 30

The following methods were compared:

« DRBECM: A decentralized method inspired by flocking
behavior, aiming to balance exploration and connectivity
maintenance.

« DRBECM-ML (Proposed Method): A variate version
of DRBECM that integrates a machine learning—driven
connectivity prediction module. By predicting RSSI val-
ues in real time, DRBECM-ML dynamically adapts the
role of each robot to ensure more robust communication,
and make better choices while choosing the area to
explore.

« Random Walk [21]: A baseline decentralized approach
where each robot moves randomly. Robots independently
choose a random direction and travel for a set number of
steps before selecting a new random heading, resulting
in uncoordinated coverage of the environment.

« HCETIIC (Hybrid Cheetah Exploration Technique
with Intelligent Initial Configuration) [22]: Employs
a central planner to coordinate exploration tasks and
optimize initial robot placements. The algorithm’s per-
formance is evaluated across various starting configura-

tions, such as uniform, centralized, random, perimeter,
clustered, and strategic distributions, with the goal of
maximizing exploration efficiency.

« Frontier Exploration (No Map Sharing) [4]: A decen-
tralized method in which each robot independently main-
tains its own map and identifies frontier cells (unexplored
regions at the boundary of known space). Robots select
frontiers based on factors like distance, but do not share
map data with other robots.

o Frontier Exploration (Map Sharing) [4]: A more cen-
tralized variant where robots periodically share their local
maps with a central server or with one another. This
shared global map informs more coordinated frontier
selection, enabling robots to avoid duplicating efforts and
to exploit collective knowledge of the environment.

C. Successful Exploration Rate

Table III reports the percentage of runs required for each
method to successfully complete the exploration task among
the 150 runs. We define a successful exploration as covering
at least 99% of the environment within the 3000 steps. The re-
sults highlight the varying degrees of exploration effectiveness
across different algorithms.

TABLE III
PERCENTAGE OF SUCCESSFUL EXPLORATION RUNS FOR EACH METHOD.

Method Successful Exploration (%)
DRBECM 83.6
DRBECM-ML 99.3
Frontier (Map Sharing) 100.0
Frontier (No Map Sharing) 99.6
HCETIIC 45.6
Random Walk 61.4

We observe that only three methods can be qualified as
successful : DRBECM-ML, and two variants of Frontier
methods. DRBECM-ML achieves a notably higher successful
exploration rate compared to DRBECM, suggesting that the
integration of machine learning for connectivity prediction
can significantly enhance overall coverage by eliminating
hard geometric criteria. Additionally, Frontier (Map Sharing)
achieves a success rate 100%, reflecting the advantages of
collective knowledge when robots periodically exchange their
local maps in spite of its high cost.



DRBECM achieves a low approximately 84% success rate,
which is attributed to simulations with fewer robots being
unable to fully extend coverage across the entire grid. By
contrast, Random Walk displays comparatively lower success
rates, indicating the limitations purely uncoordinated explo-
ration.

These results underscore the importance of real-time con-
nectivity assessment and cooperative map sharing in maintain-
ing robust communication networks and achieving comprehen-
sive coverage. Further experiments and analyses may explore
the interplay between exploration speed, network reliability,
and scalability to larger teams and environments.

D. Exploration time

We define exploration time as the total simulation steps re-
quired to achieve a target coverage of 99% of the environment.
Figure 1 shows a box plot of exploration times for all methods.

Interestingly, DRBECM exhibits a slightly lower median
exploration time than DRBECM-ML, indicating that its purely
geometric connectivity criteria can lead to faster overall cov-
erage. However, DRBECM-ML relies on a data-driven RSSI
prediction model trained on real-world measurements, making
its role switching and frontier selection more representative of
actual signal conditions. Consequently, while there is a modest
trade-off in exploration speed, DRBECM-ML is arguably more
robust to realistic communication fluctuations.

Comparing the two DRBECM variants with other methods,
Frontier (Map Sharing) demonstrates the lowest median explo-
ration time by leveraging centralized, global map sharing—at
the cost of heavier communication overhead. Meanwhile,
purely decentralized approaches such as Random Walk and
Frontier (No Map Sharing) exhibit notably longer exploration
times and higher variance. HCETIIC, which relies on a central
planner and specific initial configurations, generally yields
moderate performance but displays a broader spread in ex-
ploration times.

Overall, these results highlight that DRBECM-ML offers a
practical compromise between real-world connectivity mod-
eling and efficient coverage. Although its exploration time is
slightly higher than that of DRBECM, the improved realism in
communication prediction may be advantageous in scenarios
where signal quality is highly variable.

E. Redundant Exploration

Redundant exploration quantifies the degree of overlap
among the areas covered by different robots during the map-
ping process. Figure 2 presents a box plot comparing the
redundancy levels for several methods, including our proposed
DRBECM-ML, the original DRBECM, HCETIIC, Frontier (No
Map Sharing), Frontier (Map Sharing), and Random Walk.

Our experimental results indicate that DRBECM exhibits a
slightly lower median redundancy than DRBECM-ML. This
suggests that the purely geometric criteria employed by DR-
BECM are marginally more effective at minimizing overlap.
However, DRBECM-ML incorporates real-world RSSI predic-
tions to guide role switching and frontier selection, which
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Fig. 1. Box plot of exploration times for the different exploration methods.
The y-axis represents the steps needed to achieve the target coverage, while
the x-axis lists the methods under comparison.

introduces a modest increase in redundancy. Despite this trade-
off, DRBECM-ML still shows significantly lower redundancy
compared to other decentralized methods such as Random
Walk and Frontier (No Map Sharing).

It is worth noting that the centralized Frontier (Map Shar-
ing) approach achieves the lowest redundancy overall by
leveraging a globally shared map, though this comes at the cost
of increased communication (and thus consumption) overhead.
Similarly, HCETIIC, which relies on centralized planning and
is highly sensitive to initial configurations, displays greater
variability in redundancy.

In summary, while DRBECM-ML may incur a slight penalty
in terms of redundant exploration compared to DRBECM,
its reliance on real-world RSSI data offers a more realistic
and robust approach to maintaining connectivity in uncertain
communication environments.
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Fig. 2. Comparison of redundant exploration across the different methods.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented DBRECM-ML, an enhanced
distributed multi-robot exploration framework that extends the
original DRBECM method by integrating a machine learn-
ing—driven connectivity prediction module and refining the
frontier selection process. Our approach leverages real-time
RSSI measurements derived from real-world data collected via



the Fit-IoT-Lab testbed, enabling robots to dynamically adjust
their roles and select exploration targets based on realistic
connectivity conditions.

Our experimental results indicate that while DRBECM-ML
exhibits slightly longer exploration times compared to the
original DRBECM—Iikely due to the additional overhead of
processing real-world RSSI predictions—it achieves more ro-
bust connectivity under practical conditions. Furthermore, our
comparative evaluation of various regression models revealed
that tree-based methods, such as Decision Tree and XGBoost,
provide superior prediction accuracy and computational effi-
ciency, making them particularly well-suited for integration
into resource-constrained multi-robot systems.

In addition, simulation studies show that DRBECM-ML
attains high coverage with relatively low redundancy compared
to decentralized baselines like Random Walk and Frontier
Exploration without Map Sharing, while performing com-
parably to centralized approaches that require global map
sharing. These findings underscore the potential benefits of
incorporating real-world connectivity data into decentralized
exploration strategies, despite a modest trade-off in exploration
speed.

For future work, we plan to extend our approach to more
complex and dynamic environments, where the presence of
obstacles and varying terrain further challenge connectivity
and exploration efficiency. We also intend to investigate the
incorporation of additional Quality-of-Service (QoS) metrics,
such as latency and packet loss, to enhance the robustness
of our decision-making framework. Such extensions will pro-
vide deeper insights into the balance between exploration
performance and communication reliability, particularly in
emergency response and disaster relief operations where un-
predictable conditions and communication failures can have
critical consequences.

Overall, our work demonstrates a promising step towards
more realistic and resilient multi-robot exploration systems for
emergency scenarios, paving the way for further advancements
in decentralized coordination and robust connectivity manage-
ment.
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