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Abstract—In this paper, we propose a novel distributed multi-
robot exploration algorithm capable of efficiently exploring
unknown environments while ensuring uninterrupted communi-
cation with each other and with a base station, including multi-
hop scenarios when direct communication is not feasible. The
system is applicable in scenarios of emergencies like search and
rescue operations where time and communication reliability is
of utmost importance. Our approach introduces two distinct
roles, explorers and supporters, to enhance efficiency and con-
nectivity based on live assessments of network connectivity and
exploration needs. Explorers perform frontier-based exploration
keeping primarily focus on maximization of information gain
through unexplored parts. Supporters adopt a flocking-inspired
approach for their positioning, acting as relay points to ensure
strong communication links. Decision making is distributed, with
local information sharing so that each robot can autonomously
come to a decision in the absence of centralized control. Results
of our simulation indicate that the algorithm has reduced time
required for exploration by 80% and time spent on redundant
exploration by 74% as compared to Random walk exploration.

Index Terms—multi-robot systems, distributed exploration,
connectivity maintenance, frontier-based exploration, relative
neighborhood graph

I. INTRODUCTION

Multi-robot systems are vital for search and rescue, disaster
response, and environmental monitoring. In emergency sce-
narios, efficient exploration and reliable communication are
paramount to locate survivors and assess hazardous conditions
quickly. Efficient exploration requires not only the rapid
coverage of unexplored areas but also the maintenance of
reliable communication links among robots and with a base
station. Achieving these objectives simultaneously is chal-
lenging because of the inherent trade-offs between exploration
efficiency and network connectivity. Most existing methods
either focus on maximizing exploration speed at the expense
of connectivity or maintaining connectivity but suffering from
a reduced exploration efficiency, particularly in environments
with dynamic conditions [1].

Traditional exploration algorithms often rely on centralized
control mechanisms or assume global knowledge of the
environment, which may not be feasible in real-world sce-
narios where communication is constrained or infrastructure
is unavailable [2]. Moreover, methods that focus solely on
exploration efficiency may neglect the importance of main-
taining network connectivity, leading to isolated robots [3].

To address these challenges, we propose a distributed multi-
robot exploration algorithm that enables robots to dynamically

switch between two roles: explorers and supporters. This
dynamic role assignment allows the system to balance the
competing objectives of maximizing exploration efficiency
and maintaining network connectivity. By default, all robots
start as explorers, focusing on discovering new areas using
a frontier-based exploration strategy. Frontiers, defined as
the boundaries between explored and unexplored spaces,
guide explorers to regions that maximize information gain.
However, in multi-robot settings, frontier-based methods can
lead to redundant paths and require coordination to ensure
efficient area coverage [4]. Supporter robots are crucial for
connectivity maintenance. Inspired by flocking behavior ob-
served in nature, supporters position themselves to act as
relay nodes, enabling the formation of a communication chain
back to the base station. This flocking-inspired positioning
enables the network to adapt dynamically to changes, ensuring
that explorers remain connected even as they venture further
into unknown territories [5], thanks to the use of Relative
Neighborhood Graph (RNG) [6]. Our algorithm operates on
distributed decision-making and local information sharing
principles. Each robot makes decisions based on its local
observations and interactions with neighboring robots within
communication range. Robots share essential information
such as position, velocity, current target, role, and local map
data. This decentralized approach reduces the reliance on
global knowledge and enhances the system’s robustness to
individual robot failures and communication interruptions [7].

The main contributions of this work are:

• A dynamic distributed role-switching mechanism that
balances exploration and connectivity by allowing robots
to adapt their roles based on real-time network conditions
and exploration needs.

• A distributed flocking-inspired approach for supporter
positioning, enhancing network connectivity through de-
centralized and adaptive relay placement.

• A simple yet powerful connectivity strategy leveraging
the RNG, wherein each robot ensures continuous connec-
tivity with minimal overhead and guaranteeing a globally
connected network by design.

We evaluate the performance of our proposed algorithm
through comprehensive simulations, comparing it with exist-
ing multi-robot exploration methods. In our simulations, the
proposed method reduces the exploration time by up to 80%



and the time spent on redundant exploration by 74% relative
to purely random exploration approaches, while maintaining
overall connectivity. In addition, it achieves performance
comparable to that of centralized frontier-based methods, thus
providing a good balance between speed, connectivity, and
decentralized implementation.

The remainder of this paper is organized as follows: Section
II reviews literature on multi-robot exploration and connectiv-
ity maintenance, Section III introduces the system model and
background, Section IV presents the proposed method, which
performance analysis is presented in Section V. Section VI
concludes and outlines directions for future research.

II. RELATED WORK

A. Connectivity Maintenance in Multi-Robot Systems

Connectivity maintenance is a fundamental requirement
for effective multi-robot collaboration. Sabattini et al. [8]
proposed a decentralized control strategy that uses algebraic
connectivity to ensure network robustness, focusing control
efforts on critical robots—nodes whose disconnection could
partition the network. Cai et al. [9] extended this with an adap-
tive connectivity maintenance framework that dynamically
adjusts communication links according to environmental and
task specific requirements. Recent advancements have further
refined these strategies. Luo et al. [10] introduced a minimally
disruptive connectivity enhancement approach that optimizes
robot movement to strengthen team connectivity while mini-
mizing disruptions to ongoing tasks. Similarly, Ramachandran
and Pierpaoli [11] proposed a resilient monitoring method for
heterogeneous multi-robot systems. Their framework allows
for adaptive network reconfiguration to effectively counter
node failures in dynamic environments.

Robustness in the face of real-world uncertainties is another
critical focus. Panerati et al. [12] proposed a controller capa-
ble of maintaining connectivity even under fault conditions
to address the impact of hardware and software failures in
swarm robotics. Luo and Sycara [13] tackled the challenge of
robust connectivity by ensuring k-connectivity, allowing the
network to withstand the failure of up to k-1 robots. Their k-
Connected Minimum Constraints Subgraph (k-CMCS) algo-
rithm provides robust connectivity with minimal interference
to the robots’ primary exploration tasks.

In summary, current research on maintaining connectivity
in multi-robot systems offers robust solutions, yet most adopt
either highly centralized architectures or rely on static as-
sumptions regarding communication links. While these strate-
gies ensure stable network configurations, they often constrain
individual robots’ ability to explore freely or adapt in real
time. Our approach builds on the concept of decentralized
connectivity control but introduces dynamic role-switching
to achieve a more flexible balance between exploration and
communication.

B. Exploration Strategies with Connectivity Awareness

Connectivity-aware exploration strategies aim to balance
the competing objectives of efficient exploration and robust

communication. Pei et al. [1] developed Connectivity and
Bandwidth Aware Exploration (CBAX), which optimizes re-
lay node placement and routing paths to manage bandwidth
while ensuring network connectivity. Later enhancements
demonstrated significant reductions in exploration time, par-
ticularly in dense environments [14].

Nestmeyer et al. [15] proposed a decentralized multi-
target exploration approach that dynamically assigns tasks to
robots while maintaining a connected network. However, their
method does not address dynamic role-switching between
exploration and connectivity maintenance, which is a key
aspect of our approach.

Mahdoui et al. [4] introduced a frontier-based exploration
strategy that reduces communication overhead by exchanging
only frontier points between robots instead of full maps.
This approach enables efficient coverage while conserving
bandwidth and maintaining connectivity.

Recent studies have introduced more sophisticated methods
to improve connectivity-aware exploration. Lin et al. [16]
developed an online connectivity-aware dynamic deployment
strategy for heterogeneous multi-robot systems. This method
allows robots to adaptively redistribute themselves to main-
tain connectivity while optimizing exploration efficiency in
dynamic environments.

Yang et al. [17] extended the role of line-of-sight con-
straints in multi-robot exploration. Their minimally con-
strained multi-robot coordination framework ensures connec-
tivity while enabling robots to explore spatially separated
regions efficiently.

Connectivity-aware exploration methods often combine
frontier-based coverage with strategies to keep robots in range
of one another. While effective, these solutions can struggle
with slow adaptation or high communication overhead. In
contrast, our framework builds on their frontier-focused prin-
ciples but empowers robots to switch roles on the fly based on
local exploration and connectivity demands, thus maintaining
efficient coverage and dependable communication links.

C. Machine Learning for Exploration and Connectivity

Recent advancements have leveraged machine learning
to improve multi-robot exploration. Zhang et al. [5] intro-
duced Hierarchical-Hops Graph Neural Networks (H2GNN)
for multi-robot systems. This approach uses multi-agent
reinforcement learning (MARL) to optimize collaborative
strategies, enhancing both exploration efficiency and network
maintenance.

Li et al. [18] explored reinforcement learning for decen-
tralized connectivity maintenance, embedding connectivity
constraints within the learning framework. Their approach
demonstrated adaptability across various simulated and real-
world scenarios.

Machine learning techniques have shown promise in im-
proving robot coordination. However, these methods typically
require significant training and may not adapt well to highly
dynamic environments. In contrast, our method avoids such



dependencies by using a decentralized, real-time decision-
making framework. This approach allows for greater flexibil-
ity and robustness in unknown or changing scenarios, where
pre-trained models might not perform well.

III. SYSTEM MODEL AND BACKGROUND

A. System model

We consider a fleet of N mobile robots, R =
{r1, r2, . . . , rN}, operating autonomously in an unknown 2D
environment. A fixed base station B is located at a known
position pB ∈ R2, serving as both the primary communica-
tion hub and the starting point for exploration. Each robot ri
makes decisions based on local observations and interactions
with neighbors within communication range.

By default, all robots start as explorer within communica-
tion range Rc of the base station B, thus focusing on dis-
covering new areas via frontier-based exploration strategies.
Each robot ri has:

1) Position and velocity: pi(t),vi(t) ∈ R2 at time t.
2) Role: ρi(t) ∈ {explorer, supporter}.
3) Sensing range: Rs > 0, within which it can observe or

map the environment.
4) Communication range: Rc > 0, within which it can

exchange data with other robots or the base station.
dij(t) = ∥pi(t)−pj(t)∥ is the Euclidean distance between

two robots ri and rj at time t. Additional parameters include:
• α ∈ [0, 1] ⊂ R is a scaling factor used so that a robot

switches to supporter role preemptively to avoid losing
communication, thus maintaining a stronger link margin.

• γ ∈ [0, 1] ⊂ R is a weighting factor balancing the
influence of supporters and explorers on the supporters
robots movement.

• A boolean Cn(i) indicating whether robot ri is connected
to B via supporters,

• Mi(t) as the local map of ri, and Fi(t) as the set of
frontier points for ri,

• Ni(t) as the set of RNG neighbors for ri,
• Li(t) as the set of all robots in communication range of

ri,
• Ei(t) and Si(t) as sets of directly connected explorers

and supporters, respectively.

B. Relative Neighborhood Graph (RNG) Background

The Relative Neighborhood Graph (RNG) is a classical
concept in computational geometry for connecting points
in a plane (or higher-dimensional space) based on their
relative proximity. Given a set of points {p1, p2, . . . , pn} in
a metric space with distance function d(·, ·), an edge (pi, pj)
is included in the RNG if and only if no third point pk is
strictly closer to both pi and pj than they are to each other.
Formally:

d(pi, pj) < max
{
d(pi, pk), d(pj , pk)

}
∀ pk ̸= pi, pj . (1)

Because the RNG is typically sparse, and has the ability to
be locally computed, each point pi only has a limited number

of neighbors, thereby reducing communication overhead and
computational complexity. Nonetheless, its design still pre-
serves sufficient connectivity to perform tasks such as multi-
robot coordination, decentralized networking, and distributed
sensor coverage.

IV. OUR PROPOSED METHOD DRBECM

In this section, we introduce the ”Dynamic Role-Based
Exploration with Connectivity Maintenance (DRBECM)” al-
gorithm designed to efficiently navigate in unknown envi-
ronments while maintaining continuous communication with
a fixed base station. The key innovation of our approach
lies in its dynamic role-switching mechanism, which allows
robots to adaptively balance between exploration efficiency
and network connectivity. A major advantage of it is the
added flexibility it provides. By enabling each robot to
switch roles in response to changing conditions, the approach
strikes a balance between swiftly covering unexplored regions
and reliably maintaining communication links. Additionally,
we incorporate collision avoidance and stagnation detection
mechanisms to enhance the robustness and safety of the
system.

A. Dynamic Role Assignment

To balance exploration and connectivity, robots dynami-
cally switch between explorer and supporter roles based on
local network conditions and exploration needs [19]. This
adaptability ensures efficient coverage of the environment
while maintaining robust communication links back to the
base station. The role update rule for each robot ri ∈ R at
time t is defined as:

ρi(t+ 1) =



supporter, if ρi(t) = explorer, Ei(t) ̸= ∅,
∀rj ∈ Si(t) ∪B, dij(t) > αRc,

explorer, if ρi(t) = supporter, Cn(i) = True,
Ei(t) = ∅, |Si(t)| = 1,∀rj ∈ Li(t),

Cn(j) = True,∃rk ∈ Li(t),

ρk(t) = supporter, dkB(t) < diB(t),

ρi(t), otherwise.
(2)

By continuously reallocating roles through local decision-
making, the system mitigates single points of failure, pre-
serves a coherent multi-hop network under dynamic condi-
tions, and accelerates overall coverage without relying on a
fixed or centralized strategy.

B. Efficient Neighbor Selection

To reduce computational complexity and enhance scalabil-
ity, we employ the RNG for neighbor selection. Each robot
constructs its local RNG graph solely from local observations
of nearby robots, which aligns naturally with our distributed
architecture and minimizes global information requirements.



RNG neighbors Ni(t) for robot ri are defined as:

Ni(t) =

{
rj ∈ Li(t)

∣∣∣∣ dij(t) < max
{
dik(t), djk(t)

}
,

∀ rk ∈ Li(t) ∩ Lj(t)

}
,

(3)

This selective communication ensures that robots maintain
only essential connections without unnecessary messaging.
The RNG facilitates more efficient and localized neighbor se-
lection compared to considering all possible neighbors. A key
property of the RNG is its sparsity; research has shown that
a node in a two-dimensional RNG has, on average, between
two and three neighbors [20]. This sparsity provides more
degrees of freedom for explorers. By restricting each robot’s
connections to these local RNG neighbors, the entire graph
remains connected, which is crucial for effective exploration
and information sharing in a fully distributed manner.

C. Frontier-Based Exploration

Explorer robots utilize a frontier-based strategy to max-
imize information gain by focusing on unexplored regions.
Frontiers are defined as the boundaries between known and
unknown spaces [21]. Each explorer selects frontiers that are
within communication range of a supporter or the base station
to ensure continuous connectivity. The set of safe frontier
points Fsafe(t) for robot ri is determined by:

Fsafe(t) =

{
f ∈ Fi(t)

∣∣∣∣∣ ∃rj ∈ Ni(t), ρj(t) = supporter,
∥f − pj(t)∥ ≤ Rc

}
(4)

where, f is the position of a frontier point.
By selecting frontiers that maintain communication links,

explorers can safely expand the explored area without becom-
ing isolated from the network.

Fig. 1. Illustration of safe and unsafe areas for exploration based on
communication range.

Figure 1 visually demonstrates the concept of safe fron-
tiers. The grid represents the environment, with yellow cells

indicating explored areas, white cells unexplored areas, and
the robot and base station shown in their respective positions.
The green cells represent the safe area to explore, which are
frontier cells within the communication range (Rc = 5) of the
robot. The red cells, in contrast, represent an unsafe area to
explore, as they exceed the maximum communication range of
5 units from the robot, thus risking breaking the connectivity.

D. Flocking-Inspired Supporter Positioning

Supporter robots play a crucial role in maintaining network
connectivity by acting as relay nodes between explorers.
Inspired by flocking behavior observed in nature, supporter
robot ri adjusts its positions based on the movements of
neighboring robots [22] as follows:

pi(t+ 1) = γpi,s(t) + (1− γ)pi,e(t) (5)

where:
• γ ∈ [0, 1] ⊂ R is a weighting factor balancing the

influence of supporters and explorers.
• pi,s(t) is the position influenced by neighboring support-

ers and the base station:

pi,s(t) = pi(t) + β1
1

|Nsupporters(t)|+ 1

(
(6)

∑
rj∈Nsupporters(t)

(
pj(t)− pi(t)

)
+
(
pB − pi(t)

))

• pi,e(t) is the position influenced by neighboring explor-
ers:

pi,e(t) = pi(t) + β2
1

|Nexplorers(t)|
(7)( ∑

rk∈Nexplorers(t)

(
pk(t) + vk(t)− pi(t)

))
• β1 and β2 are scaling constants.
• Nsupporters(t) and Nexplorers(t) are the sets of neighboring

supporters and explorers, resp.
• vk(t) is the velocity of explorer rk at time t.
• pB is the position of the base station.
This approach enables supporters to dynamically position

themselves to maintain robust communication links as explor-
ers move further into unexplored regions.

E. Collision Avoidance Mechanism

Each robot uses collision avoidance to keep a safe min-
imum distance from its RNG neighbors. By focusing on
RNG neighbors, the robots can efficiently manage collision
avoidance without excessive computational overhead.

The acceleration ai(t) of robot ri is adjusted as:

ai(t) = ai(t) +
∑

rj∈Ni(t)

ϕ(dij(t))
pi(t)− pj(t)

dij(t)
(8)

where:
• ϕ(d) is a repulsion function defined as:



ϕ(d) =

kavoid

(
Ravoid − d

Ravoid

)
, if d < Ravoid,

0, otherwise.
(9)

• Ravoid is the collision avoidance range,
• kavoid ∈ (0,1) is a scaling factor for the repulsion force,
This mechanism operates between RNG neighbors, ensur-

ing that robots maintain a safe distance from nearby robots
and avoid potential collisions without needing to consider all
robots in the environment.

Fig. 2. Progression of DRBECM. Illustration of an exploration scenario
with N = 4 robots: (1) Explorer robots are initially deployed near the base
station; (2)–(4) Early exploration, robots disperse and expand the explored
area until they reach the base station’s communication limit; (5) Dynamic role
assignment, as two robots switch to “supporter” roles; (6) Supporters move
to maintain strong communication links; (7) “Support supporting,” where one
supporter aids another to reach farther areas; (8) Flocking-inspired support
mechanism: supporter robots strategically position themselves to maintain
connectivity.

F. Stagnation Detection and Recovery

Explorer robots may become stagnant due to obstacles
or challenging terrain, hindering the overall exploration effi-
ciency. To address this, each explorer robot monitors its recent
movements to detect stagnation and if so to return back to a
previous exploration point. A robot is considered stagnant if
the maximum displacement over the last Tstagnant time steps
is less than a threshold Dstagnant:

max
t−Tstagnant≤τ≤t

∥pi(t)− pi(τ)∥ ≤ Dstagnant (10)

where:
• Tstagnant is the chosen stagnation detection time window.
• Dstagnant is the chosen stagnation distance threshold.
Upon detecting stagnation, the explorer initiates a recovery

behavior by moving towards the nearest supporter or the base
station to reset its position and resume exploration:

pi(t+ 1) = pi(t) + γrec
(
ptarget − pi(t)

)
(11)

where:
• ptarget is the position of the closest supporter or the base

station.

• γrec is a movement scaling factor for recovery.
This mechanism enables explorers to escape from local

minima and keeps on effectively exploring.
G. Information Sharing and Map Updating

Robots share local information and update their maps based
on sensor data and information received from their neighbors.

The map and frontier updates for robot ri are given by:

Mi(t+ 1) = Mi(t) ∪ SensorDatai(t) ∪
⋃

rj∈Li(t)

Mj(t)(12)

Fi(t+ 1) =

Fi(t) ∪
⋃

rj∈Li(t)

Fj(t)

 \Mi(t+ 1) (13)

where:
• SensorDatai(t) is the new sensor data collected by robot

ri.
By sharing the local maps and frontiers with neighbors in

the communication range, we improve the visibility of the
environment for the robots, thus making better choices to
explore unknown areas.

This decentralized strategy enables effective exploration
by ensuring that robots have up-to-date local information
for decision-making without being overwhelmed by data. By
focusing on essential information from relevant neighbors,
robots can make timely and informed decisions, enhancing
performance and scalability of the multi-robot system.
Implementation Considerations: The proposed method op-
erates under the principles of distributed decision making and
local interactions. Robots rely solely on local information
and communication with nearby robots, without the need for
centralized control. This decentralization improves scalability
and robustness to individual robot failures or communication
disruptions.

H. Main Algorithm

To consolidate the components of our proposed method, we
present Algorithm 1, which outlines the main steps executed
by each robot ri during the exploration process.

Algorithm 1 DRBECM, run at each robot ri
Input: Constants: Rc, Rs

Output: pi, vi, ρi, Mi, Ni, Fi

1: pi = pinitial {Initial deployment position }
2: vi = 0 {Initial velocity }
3: ρi = explorer {Set initial role }
4: Mi = {c ∈ [0, Xmax] × [0, Ymax] | ∥pi − c∥ ≤ Rs}
{Initially sensed area }

5: Fi = ∂Mi {Boundary of initially sensed area }
6: while Fi ̸= ∅ do
7: Ni ← GetRNGNeighbors(pi) {Eq. (3) }
8: ρi ← NewRole(Ni, ρi) {Eq. (2) }
9: pi,vi ← MoveRobot(Ni, ρi, Rc) {Eq. (4)–(11) }

10: Mi, Fi ← MapUpdatingShareInformation(Ni, Mi, Fi,
Rs) {Eq. (12), (13) }

11: end while



Algorithm 1 presents the proposed distributed approach for
multi-robot exploration inspired by flocking behavior. Each
robot ri maintains its state (position pi, velocity vi, role ρi),
a local map Mi, and a frontier set Fi. The algorithm initializes
these variables (lines 1–5) and then enters its main exploration
loop (lines 6–10).

The exploration process is driven by the frontier set Fi,
which represents unexplored areas. In each iteration, the
robot determines its Relative Neighborhood Graph (RNG)
neighbors Ni (line 7, Equation (3)). This step is crucial, as
it defines the local network topology that informs subsequent
decisions.

Based on this network information, the robot updates its
role ρi (line 8, Equation (2)). This dynamic role assignment
allows the system to adapt to the current exploration state, bal-
ancing between active exploration and network maintenance.
Specifically, if an explorer robot detects that its movement
might break network connectivity, it can switch to a supporter
role, acting as a relay to maintain the communication link and
further support the other explorers, as shown in the example
scenario depicted in Fig. 2 —specifically sub-figure (5)—
where two robots switch to the supporter role. Conversely,
if a supporter robot determines that it’s no longer needed as
a relay (e.g., when explorers have moved closer to the base
or other supporters), it can switch back to an explorer role to
continue active exploration.

The robot’s movement is then computed based on its
current role and the positions of its neighbors (line 9,
Equations (4)-(11)). Explorers move towards frontier points,
while supporters adjust their positions to maintain network
connectivity, ensuring a cohesive exploration effort. As illus-
trated in Fig. 2 —sub-figures (6) and (7)— the two explorer
robots advance toward the frontiers, aided by supporters who
maintain connectivity back to the base station.

Finally, the robot updates its local map and frontier set
based on new sensor data and information shared with neigh-
bors (line 10, Equations (12)-(13)). This step is critical as it
integrates new information, potentially revealing new frontiers
or closing existing ones, which directly influences the next
iteration of the algorithm.

This cycle continues until the frontier set is empty, indicat-
ing complete exploration or the robots cannot move further
due to the communications constraints.

V. PERFORMANCE EVALUATION

A. Experimental setting

All simulations were conducted with Python scripts using
a grid-based simulation. The source code and configuration
files for replicating these experiments are available at https:
//github.com/HazemCHAABI/DRBECM.

We conducted a series of simulations to evaluate the per-
formance of our proposed method against existing multirobot
exploration algorithms. The experiments were carried out on
a 120× 120 grid map, with a sensing range of 4 units and a
communication range of 20 units. Each algorithm was tested
with varying numbers of robots, ranging from 11 to 15, on

100 runs. We stop the simulation after 3000 steps if it is not
complete. The following methods were compared:

• DRBECM (Proposed Method): A decentralized method
inspired by the flocking behavior, focusing on efficient
exploration and connectivity maintenance.

• Random Walk [23]: A baseline decentralized approach
where robots move randomly without coordination. In
this method, each robot independently selects a random
direction and moves in that direction for a predetermined
number of steps before choosing a new random direction.

• HCETIIC (Hybrid Cheetah Exploration Technique
with Intelligent Initial Configuration) [24]: Utilizes
a central planner to coordinate robot movements and
exploration tasks, considering the critical impact of ini-
tial robot positions. The algorithm aims to maximize
exploration efficiency across different start configura-
tions, including uniform, centralized, random, perimeter,
clustered, and strategic positions.

• Frontier Exploration (No Map Sharing) [25]: A de-
centralized method in which robots individually explore
frontiers without sharing information. Each robot main-
tains its own map of the environment and identifies
frontier cells (unexplored areas at the boundary of known
space) independently. Robots select frontiers to explore
based on criteria such as distance and potential informa-
tion gain, without coordinating their choices with other
robots.

• Frontier Exploration (Map Sharing) [25]: A central-
ized solution that enables robots to share maps and
coordinate their exploration. In this approach, robots
periodically communicate their local maps to a central
server. The shared information is used to construct
a global map of the environment, allowing for more
informed decision-making when selecting frontiers to
explore.

B. Exploration Time

The exploration time, defined as the time required to
achieve 100% coverage of the map, was analyzed across the
exploration methods. Figures 3 and 4 depict the distribution
of exploration times for the proposed method and baseline
algorithms. The results demonstrate that the proposed method
achieves exploration times comparable to the centralized
Frontier with Map Sharing method. This is particularly no-
table given the decentralized nature of the proposed approach.
The exploration time is significantly reduced for the proposed
method compared to decentralized baselines such as Ran-
dom Walk and Frontier without Map Sharing. Our proposed
method achieves a median exploration time that is 21.49%
faster than Frontier without Map Sharing and 80.26% faster
than Random Walk. Whilst, the centralized approach Frontier
with Map Sharing, achieves the lowest median exploration
time but requires global map sharing.



Fig. 3. Exploration time distributions for the different exploration methods.

Fig. 4. Mean Exploration time across varying numbers of robots.

C. Exploration Efficiency

Exploration efficiency, measured as the ratio of coverage
to the total distance traveled by all robots, was used as a
key metric to evaluate the performance of different methods.
As shown in Fig. 5, DRBECM presents a significantly higher
efficiency compared to decentralized baselines. Specifically, it
outperforms Frontier without Map Sharing and Random Walk
by 126.8% and 291.2%, respectively. Although Frontier with
Map Sharing achieves the highest efficiency, this comes at the
cost of requiring centralized communication.

D. Redundant Exploration

Redundant exploration, measured as the total overlap of
explored areas among robots, was evaluated to understand
the efficiency of coverage coordination. As shown in Fig. 6,
the DRBECM method achieves a significant reduction in
redundant exploration compared to both centralized and de-
centralized baselines. Redundancy levels are 55.93% lower
than Frontier without Map Sharing and 74.10% lower than
Random Walk, highlighting the inefficiencies of these base-
lines in coordinating exploration. Centralized approaches,
such as Frontier with Map Sharing, achieve the lowest redun-
dancy overall due to their ability to globally coordinate robot
movements. However, the proposed decentralized method
effectively minimizes overlap without requiring global map

Fig. 5. Exploration efficiency across different methods.

sharing, demonstrating its ability to optimize coverage effi-
ciently.

Fig. 6. Redundant exploration across the different methods.

E. Discussion

The results show the efficacy of the DRBECM method
in achieving efficient and robust multi robot exploration.
Unlike centralized approaches such as HCETIIC and Frontier
with Map Sharing, our method does not rely on a central
controller, making it more suitable for real-world applications
where communication infrastructure is limited. Additionally,
the dynamic role-switching mechanism allows our system to
adapt to changing conditions, ensuring that robots maintain
connectivity while exploring unknown regions.

By outperforming decentralized baselines in exploration
efficiency and redundancy, and achieving competitive perfor-
mance in exploration time, our proposed method strikes an
effective balance between scalability, efficiency, and connec-
tivity maintenance.

While our results show notable improvements in both
coverage and connectivity, several limitations warrant closer
examination. First, our role-switching mechanism can occa-
sionally lead to multiple robots remaining in the supporter
role if local connectivity metrics become overly conservative,
thus reducing the number of active explorers and delaying
full coverage. Additionally, our approach assumes relatively



stable communication, which may not hold in cluttered or
noisy settings. In reality, intermittent link failures, variable
bandwidth, and communication delays could abruptly shift the
network topology in ways our current switching rules may not
fully accommodate. Maintaining flocking-inspired behavior
among supporters also becomes more challenging in ob-
structed environments, where line-of-sight may be frequently
lost. Moving forward, we plan to strengthen our algorithm
by introducing a machine learning model that predicts the
future QoS before the movement of the robots happen. We
will also conduct extensive real-world experiments to validate
our method’s resilience under practical constraints.

VI. CONCLUSION

In this paper, we presented a novel distributed multi-robot
exploration algorithm that dynamically balances exploration
efficiency with network connectivity maintenance. By intro-
ducing a dynamic role-switching mechanism, robots adap-
tively assume explorer or supporter roles based on real-time
assessments of network conditions and exploration demands.
Explorers utilize a frontier-based exploration strategy to max-
imize information gain, while supporters employ a flocking-
inspired approach to maintain robust communication links to
the base station. Our method operates on the principles of
distributed decision-making and local interactions, reducing
reliance on centralized control and enhancing scalability and
robustness. The incorporation of collision avoidance and
stagnation detection mechanisms further improve the safety
and efficiency of the multi-robot system.

Extensive simulations demonstrated that our approach
achieves exploration times comparable to centralized methods
while maintaining the advantages of a decentralized system.
The results showed significant improvements in exploration
efficiency and reduced redundancy compared to both central-
ized and decentralized baselines. Our algorithm effectively
balances the trade-offs between exploration and connectivity,
making it suitable for real-world applications where commu-
nication infrastructure may be limited or unreliable, such as
in emergency response and disaster relief operations.

Future work will focus on extending the algorithm to more
complex and dynamic environments, incorporating obstacles
and varying communication ranges. Additionally, we plan to
explore the integration of machine learning techniques to en-
hance decision-making and adaptability, as well as conducting
real-world experiments to validate the practical applicability
of our approach.
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